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Abstract—A multiconductor transmission line in a multilayer

dielectric medium is complicated and therefore is frequently

analyzed by the simple quasi-TEM approach. Unlike the full

wave eigenvalue approach, the quasi-TEM approach does not
give the propagation dispersion characteristics of the line. This

paper overcomes this problem by first obtaining the solution of

each mtdticonductor mode from the quasi-TEM approach.
Then these solutions are used as both basis and testing func-

tions in a variational formulation of the full wave eigenvalue
analysis. The result is high accuracy in the dispersive propa-
gation constants of the multiconductor modes. By solving only
for high frequency eigenvalues, not for the high frequency ei-
genvectors, the method is simpler and faster than the conven-
tional full wave dispersion analyses.

I. INTRODUCTION

R ECENTLY, quasi-TEM analysis has been a promi-

nent tool in characterizing multiconductor transmis-

sion lines in a multilayer dielectric media [1] -[4]. Quasi-

TEM analysis normally includes two steps. Firstly, the

distributed circuit parameters, such as the capacitance

matrix [C] and the inductance matrix [L], are calculated

numerically using an electrostatic approach [1] –[3]. Then

the quasi-TEM wave propagation constants and charac-

teristic impedances of all the distinct modes are deter-

mined by solving a coupled set of ordinary differential

equations [4], [8].

The propagation constants obtained from quasi-TEM

analysis are inaccurate in analyzing high frequency mi-

crowave integrated circuits and some high speed digital

circuit boards, In these cases, knowledge of the disper-

sion characteristics of the propagation constants is nec-

essary. By improving the quasi-TEM solutions through a

full wave eigenvalue equation, this paper studies the fre-

quency dispersion of all the quasi-TEM distinct modes
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supported by the multiconductor transmission lines in

multilayer dielectric media.

Although some available methods, such as the spectral

domain method, the method of lines and the spatial

Green’s function methods [5]-[7], can be used for obtain-

ing the dispersion characteristics of multiconductor mul-

tilayer transmission lines, they are computationally inten-

sive. In addition, these methods may generate some non-

physical modes in solving multiconductor transmission

line problems, since the resultant matrix size is usually

much greater than the number of strip conductors. This

paper presents a new technique, which improves the com-

putational efficiency and eliminates the non-physical

modes, in determining the propagation constants of the

multiconductor modes. In this technique, the charge dis-

tribution for each distinct mode is determined first using

a quasi-TEM (2-D electrostatic) analysis. This charge

distribution is then taken as an approximation of the cur-

rent distribution for the distinct mode. By using the Gal-

erkin’s method twice (in Section HI), a full wave eigen-

value equation is derived involving the propagation

constant and the corresponding current distribution.

Therefore the dispersive propagation constant for each

distinct mode, at a certain frequency, can be obtained nu-

merical y by solving the eigenvalue equation,

For the dispersion characteristics of NC distinct modes

on an NC-conductor transmission line, our technique has

two major advantages over the commonly used eigen-

value techniques reported in [5]–[7], [10], [14]. Firstly,

the new eigenvalue equation has only one solution for a

pre-determined current distribution of each distinct mode.

Therefore the non-physical modes are absent. Secondly,

the new eigenvalue equation of full wave analysis in-

volves only O(N~ ) operations in each iteration step for

solving the eigenvalue equation, where N~ is the total

number of segments in moment method solution. This is

opposed to the commonly used full wave techniques [5]-

[7], [10], [14] where O(N~ ) operations are needed in each

iteration step. Therefore, the computational efficiency is

improved.

In this paper we only consider infinitely thin strip con-
ductors in carrying out the calculations. The same tech-

nique is applicable to conductors of arbitrary cross sec-

tion.
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II. Low FREQUENCY CHARGE DISTRIBUTICJNS BY ‘rHE

QuAsI-TEM ANALYSIS

As shown in Fig. 1, the transmission line structure

studied in this paper consists of two optional ground

planes, three optional dielectric layers, and NC infinitely

thin strip conductors, each horizontally located at any po-

sition. In this section, we look for the charge distributions

on each strip, for all the multiconductor mocles. As the

first step, each strip is divided into a few smaller seg-

ments. The total number of segments on all strips, N,, is

usually much greater than the total number of strips, lVC.

The charge distribution under a certain voltage excitation

can be obtained numerically by a two dimensional static
moment method in the transverse dimension [1]-[4], [12]:

[%1 = [%.] [~nl> m,n=l,2, ””~N, (1)

where [q~] and [v.] are the charge and the voltage on each

segment respectively, and [c~.] is the coefficient matrix

of size N, x N, in the moment method solution. The ca-

pacitance matrix [C] of N. x N. for multiconductor lines

can be obtained by finding the charge distributions on all

strips through (1), The inductance matrix of NC x NC can

be obtained from the following equation:

[L] = p~e~ [co] -’ (2)

where [Co] is the capacitance matrix found when all di-

electric layers are replaced by free space.

It is well known [8] that there are NC distinct quasi-

TEM modes on the transmission line system. With the

capacitance and inductance matrices obtained, the N. dis-

tinct modes can be obtained by solving the following tele-

graph equation:

d2[V.]

dz2
+ W2[LC] [Vn] = o, n=l,2, .Ot NC (3)

where [V.] is a column vector and represents the voltages

of all strip conductors with respect to the ground plane,

and [LC] is the product of the inductance matrix [L] and

capacitance matrix [C]. Equation (3) is a set of N. cou-

pled ordinary differential equations. Through the follow-

ing linear transformation,

V’nl = [JLnl [en], m,n=l,2, ””” Nc (4)

where [Mm.] is the transformation matrix ob~ained through

the diagonalization of matrix [LC], [15], and [e.] is the

transformed column vector of voltages, (3) can be changed

to the following decoupled equation set:

where

[P”:

d2[e.]

dz 2
+ [~”][efl] = O (5)

()
fly o“”” o

0 /3;””” o
= (6)

. . .

0 o“”” I%’c

Fig. 1. Multiconductor transmission lines in multilayered media.

ando~(n = 1, 2, 0 0 “ Nc ) are known as the propagation

constants of Nc distinct quasi-TEM modes on an NC-con-

ductor transmission line system. The superscript “O”

means that these propagation constants are obtained from

a quasi-TEM analysis.

In (4), the nth column of [Mm.] is a voltage eigenvector

0 By takingcorresponding to the propagation constant (3..

this voltage eigenvector as the enforced voltage excitation

on the multiconductor transmission line, and through ( 1),

we can get the charge distribution on each strip for the

distinct mode with propagation constant 6:. It is noted

that although the vector eigenvector has only NC elements

representing the NC strips, the voltage excitation vector

[v.] used in (1) has N, elements representing N, segments

over all strips. The charge distribution [qw] obtained from

(l), under an eigenmode voltage excitation, will be used

in determining the frequency dispersive propagation con-

stant as discussed in the following section.

111, HIGH FREQUENCY PROPAGATION CONSTANT

THROUGH A FULL WAVE VARIATIONAL

FORMULATION

To determine the high frequency propagation constant

for each distinct mode, we start with the following full

wave integral equation [7], [10]:

J?tin(x) = $1! EE(X, x’) . 7,(X’) dx’ = O (7)
s.

where x denotes the position, Et~n(x) is tangential electric

field on the strip conductors, ~~ (x, x’) is two dimen~ional

dyadic Green’s function of the electric field, and .7, (x’)

is surface electric current on the strip conductors. The full

wave Green’s function can be evaluated accurately using

the complex image technique [18].

For the ~. distinct modes, the electric current trans-

versely flowing on the strip conductors $s negligible com-

pared to the longitudinal current, i.e., J, (x’) = 2J$Z(X’ ).

This assumption is also used by Knorr et al. [9] in solving

single and coupled microstrip lines. Since only one com-

ponent of the electric current is involved in the integral

equation (7), we need only match one component of the

electric field on the strip conductors, i.e.,

E,(x) = ~$1
!

G%(x, X’ )~$,(.x’ ) dx’ = O. (8)
s.

Using Galerkin’s method, the integral equation (8) can

be converted to the following matrix equation, similar to

[7], [10]:

[-zm( ml [1.1= 03 m,n=l,2, ””. N, (9)
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where N, is the total number of segments on all the strip

conductors, [[~] represents the unknown coefficients of

current expansion.

The usual way of finding the unknown propagation con-

stant @from (9) is to search the zeros of the determinant

of the matrix [Z~~( ($] [5]–[7], [10], [14], using a numer-

ical iteration algorithm. It is known that calculating the

determinant of an N, x N, matrix involves O(N~ ) opera-

tions, For a transmission line system composed of one or

two strip conductors, calculating the determinant in each

iteration step is not a major problem, because the matrix

size is small. For multiconductor transmission lines com-

posed of, say, more than five conductors, calculating the

determinant of a large matrix takes a large amount of

computer time. Moreover, some unphysical modes may

be generated because the matrix size is much greater than

the number of strip conductors. For instance, a single mi-

crostrip line has only one distinct mode. If we use three

segments in moment method solution, two non-physical

modes will be generated. To reduce the computer time

and eliminate the non-physical modes, we propose a new
scheme to obtain the frequency dispersive propagation

constant for each distinct mode, as described below.

Suppose that the eigenvector [Zm] is known, by pre-mul-

tiplying (9) by the transpose vector [l~]T, we have the fol-

lowing 1 X 1 matrix equation,

[Jn]~[zmn(@)] [ln] = o. (lo)

The above equation can be considered as the result of

re-using the Galerkin’s method, where the eigenvector [1,,]

is taken as a testing function. The eigenvalue equation

(10) is a 1 X 1 matrix equation, or a transcendental equa-

tion. The unknown eigenvalue (i. e., the propagation con-

stant) corresponding to the eigenvector [1.] can be ob-

tained by solving (10) iteratively.

U is seen in (10) that only a matrix multiplication is

involved in each iteration step, which takes O(N; ) oper-

ations for an N, X N, matrix. This is opposed to the com-

monly used eigenvalue techniques [5]-[7], [10], [141

where O(N: ) operations are needed for calculating the de-

terminant of a matrix in each iteration step. Another fa-

vorable feature of (10) is that for a given current distri-

bution [1.] of an eigenmode, there is only one solution of
the eigenvalue. This is again opposed to the commonly

used eigenvalue techniques [5]-[7], [10], [14] where N,

eigenvalues exist for an N, X N. matrix. The elimination

of the non-physical modes is of special importance in

solving multiconductor lines, since it is not an easy task

to choose NC useful eigenvalues out of the total N$ eigen-

values.

Since Galerkin’s method is used twice in deriving the

matrix equation (9) and the eigenvalue equation (10), the

error existing in the eigenvector [1.] only causes a very

small second order error in obtaining the propagation

constant. This argument is supported by the proof of

variational property of Galerkin’s method [16]. Numeri-

cal results in the next section will further confirm the ac-

curacy of (10).

In solving (10), the rigorous eigenvector [1.] is usually

unknown. In this paper we take the charge distribution

[%] in (1) as an approximate current distribution, by us-
ing the following relation between charge and current:

[Zn] = ; [qn] , n=l,2, ”o” N,. (11)

The charge distribution [q.] was obtained from (1) under

the excitation of an eigenmode voltage as discussed in the

last section. In carrying out the calculations of (10), the

constant Q/6 can be dropped.

The validity of the approximate current distribution ob-

tained from (11 ) can be argued as follows:

(a) On a zero-thickness strip conductor of infinite con-

ductivity, the surface charges and the longitudinal

surface current have the same distribution, This is

easil~ seen from the current continuity equation,

V . 1, = jcop,, and was also used by Hashimoto

[17].

(b) The charge distribution [q~] obtained from quasi-

TEM analysis is a good approximation to the true

distribution of time-varying charges, and the lon-

gitudinal current.

(c) Due to the variational property of Galerkin’s

method, the error introduced in the current distri-

bution causes only a second order error in the ei-

genvalue from (10). Therefore the frequency dis-

persive propagation constant can be determined

very accurately from (10), as will be confirmed in

the following examples.

As a summary, determining the frequency dispersion of

a multiconductor transmission line system involves the

following steps:

Step 1. Solve an electrostatic problem to obtain the [C]

and [L] matrices, using any one of the tech-

niques presented in [1]-[4], [12].

Step 2. Find the eigenvalues and eigenvectors of the

matrix [LC]. The eigenvalues are the quasi-

TEM wave propagation constants of the dis-

tinct modes. They can be taken as the initial

values for step 4.

Step 3. Taking one eigenvector of step 2 as the voltage

excitation, find the charge distribution on each

strip for this specific mode.

Step 4. Taking the electrostatic charge distribution of

step 3 as the approximate eigenvector of lon-

gitudinal current, find the corrected propaga-

tion constant from (10).

Step 5. Repeat steps 3 and 4 to get the corrected prop-

agation constants for all the distinct modes.

IV. RESULTS FOR MULTICONDUCTOR TRANSMISSION

LINE EXAMPLES

We first validate the technique proposed in this paper

through some simple examples, i.e., the single microstrip

line and the couded microstri~ line. Then we nresent
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some results for multiconductor transmission lines in mul-

tilayer dielectric media, i, e., a six-strip-coupled micro-

strip example and a three-strip-coupled inhornogeneous

stripline example.

A. A Single Microstrip Line

For a single microstrip line as shown in Fig. 2(a), there

is only one distinct mode which is the fundamental mode

on the line. We calculated the propagation constants of

microstrip lines with the dielectric constants ranging 1,0

to 40.0, the electrical thickness h /hO ranging from 0,0 to

0.15. For 1 mm-thick substrate, this corresponds to the

frequency range of dc up to 45 GHz. OUIT results agree

with those given by method of lines [13] with less than

0.2 % difference. After converting the propagation con-

stants into effective permittivities, the results are plotted

in Fig, 2(b).

It should be emphasized that the current distribution

used in (10) is taken to be the same as the charge distri-

bution which is obtained from a quasi-TEM analysis. The

results for single microstrip line are excellent. They imply

that:

1)

2)

Fig. 3.
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(a) A coupled microstrip line structure. (b) Frequency dispersion
of odd and even modes on coupled microstrip lines.
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Fig. 4. (a) A coupled microstrip line system with six strip conductors. (b)
Frequency dispersion of six distinct modes for the structure shown in

investigated. Fig.” 4(a)~ “

The approximate current distribution obtained from

a quasi-TEM analysis is sufficient for substitution
into (10) to accurately obtain the high frequency mode with VI = 1, Vz = – 1 and the even mode with V,
propagation constant. = 1, Vz = 1. We calculate the high frequency propaga-

B. Coupled Microstrip: Two Strips
tion constants for these two distinct modes using the steps

described in last section. Fig. 3(b) shows our results and

For a two-conductor microstrip line system as shown those obtained using the method of lines [13]. The differ-

in Fig. 3(a), there are two distinct modes, i.e., the odd ence is still within 0.2 %.
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Fig. 5. (a) A three-conductor stripline structure. (b) Propagation constants
of three distinct modes for the structure shown in Fig. 5(a).

C. Coupled Microstrip: Six Strips

For coupled microstrip lines with six strip conductors,

as shown in Fig. 4(a), the field pattern for each distinct

mode is more complicated than that in single or two-cou-

pled microstrip lines. Fig, 4(b) shows the propagation

constants of all the six distinct modes.
It is known that in two-coupled line case, the odd mode

has a lower effective dielectric constant ~,, .f than the even

mode. There are similarities in the six-coupled line case.

The mode with alternatively positive and negative polar-

ities across the strips, designated as mode 1 in Fig. 4(b),

has the lowest ~,, .f. The mode with the same polarity

across the strips, designated as mode 6, has the highest

6,, ~ff. Other modes in between are orthogonal to each other

and have intermediate ~r,~ff.

It is seen in Fig. 4(b) that at high frequencies the true

propagation constants for each distinct mode is signifi-

cantly greater than that from the quasi-TEM analysis.

D. Coupled Striplines: Three Strips with Three

Dielectric Layers

The frequency dispersion of multiconductor transmis-

sion lines is due to the dielectric inhomogeneity, i.e., the

existence of multiple dielectric layers. To show the sig-

nificance of dielectric layers, we calculate the high fre-

quency propagation constants of a three-conductor strip-
line system as shown in Fig. 5(a). The propagation

constants for three distinct modes are plotted Fig. 5(b),

for the homogeneous dielectric case (dotted line) and for

the inhomogeneous dielectric case (solid lines) respec-

tively.

It can be seen in Fig. 5(b) that in the homogeneous

stripline case, the three distinct modes have the same

propagation constant which is equal to &kO. For the in-

homogeneous stripline case, however, three distinct

modes are significantly different. All of them have signif-

icant frequency dispersion.

V. CONCLUSION

In this paper, a simple and new technique is presented

for calculating the frequency dispersion of multiconductor

transmission lines in multilayer dielectric media. In this

technique, we first solve a quasi-TEM problem to obtain

the quasi-TEM wave propagation constant and the charge

distribution on each strip conductor for a distinct mode.

Then this charge distribution is taken as an approximation

of the current distribution. The latter is used in a new

eigenvalue equation to obtain the frequency dispersive

propagation constant for that distinct mode. This new

technique has two advantages over the commonly used

eigenvalue techniques. Firstly, only O(N~ ) operations are

involved in each iteration step for solving the high fre-

quency propagation constant, as opposed to O(N; ) oper-

ations in each iteration step in the commonly used tech-

niques. Secondly, all the non-physical modes are easily

eliminated using the new eigenvalue equation. To vali-

date the new technique, examples of simple and coupled

micro strip lines are tested. The results agree with those

given by method of lines with less than 0.2% difference.

Two more examples, a six-conductor microstrip system

and a three conductor inhomogeneous stripline system,

are also tested and show significant frequency dispersion,

The emphasis of this paper is a method for obtaining

an accurate set of high frequency propagation constants,

through a set of low frequency current eigenvectors which

are therefore inaccurate at the high frequencies; the

method uses a double application of the Galerkin’s pro-

cedure. After the high frequency propagation constants

are accurately obtained from (10), it is possible to substi-

tute them into (9) to obtain the corresponding current ei-

genvectors, from which the characteristic impedances can

be determined. Since this last step is not the main purpose

of this paper, and would not be noticeably different from

the techniques used in [5]–[7], [12], it is not included in

this paper.
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