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A Simple Technique for Calculating the Propagation
Dispersion of Multiconductor Transmission Lines
in Multilayer Dielectric Media
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Abstract— A multiconductor transmission line in a multilayer
dielectric medium is complicated and therefore is frequently
analyzed by the simple quasi-TEM approach. Unlike the full
wave eigenvalue approach, the quasi-TEM approach does not
give the propagation dispersion characteristics of the line. This
paper overcomes this problem by first obtaining the solution of
each multiconductor mode from the quasi-TEM approach.
Then these solutions are used as both basis and testing func-
tions in a variational formulation of the full wave eigenvalue
analysis. The result is high accuracy in the dispersive propa-
gation constants of the multiconductor modes. By solving only
for high frequency eigenvalues, not for the high frequency ei-
genvectors, the method is simpler and faster than the conven-
tional full wave dispersion analyses.

I. INTRODUCTION

ECENTLY, quasi-TEM analysis has been a promi-

nent tool in characterizing multiconductor transmis-
sion lines in a multilayer dielectric media [1]-[4]. Quasi-
TEM analysis normally includes two steps. Firstly, the
distributed circuit parameters, such as the capacitance
matrix [C] and the inductance matrix [L], are calculated
numerically using an electrostatic approach [1]-[3]. Then
the quasi-TEM wave propagation constants and charac-
teristic impedances of all the distinct modes are deter-
nined by solving a coupled set of ordinary differential
equations [4], [8].

The propagation constants obtained from quasi-TEM
analysis are inaccurate in analyzing high frequency mi-
crowave integrated circuits and some high speed digital
circuit boards. In these cases, knowledge of the disper-
sion characteristics of the propagation constants is nec-
essary. By improving the quasi-TEM solutions through a
full wave eigenvalue equation, this paper studies the fre-
quency dispersion of all the quasi-TEM distinct modes
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supported by the multiconductor transmission lines in
multilayer dielectric media.

Although some available methods, such as the spectral
domain method, the method of lines and the spatial
Green’s function methods [5]-[7], can be used for obtain-
ing the dispersion characteristics of multiconductor mul-
tilayer transmission lines, they are computationally inten-
sive. In addition, these methods may generate some non-
physical modes in solving multiconductor transmission
line problems, since the resultant matrix size is usually
much greater than the number of strip conductors. This
paper presents a new technique, which improves the com-
putational efficiency and eliminates the non-physical
modes, in determining the propagation constants of the
multiconductor modes. In this technique, the charge dis-
tribution for each distinct mode is determined first using
a quasi-TEM (2-D electrostatic) analysis. This charge
distribution is then taken as an approximation of the cur-
rent distribution for the distinct mode. By using the Gal-
erkin’s method rwice (in Section III), a full wave cigen-
value equation is derived involving the propagation
constant and the corresponding current distribution.
Therefore the dispersive propagation constant for each
distinct mode, at a certain frequency, can be obtained nu-
merically by solving the eigenvalue equation.

For the dispersion characteristics of N, distinct modes
on an N.~conductor transmission line, our technique has
two major advantages over the commonly used eigen-
value techniques reported in [5]-[7], [10], [14]. Firstly,
the new eigenvalue equation has only one solution for a
pre-determined current distribution of each distinct mode.
Therefore the non-physical modes are absent. Secondly,
the new eigenvalue equation of full wave analysis in-
volves only O(N?) operations in each iteration step for
solving the eigenvalue equation, where N, is the total
number of segments in moment method solution. This is
opposed to the commonly used full wave techniques [5]~
[7], [10], [14] where O(N 3) operations are needed in each
iteration step. Therefore, the computational efficiency is
improved.

In this paper we only consider infinitely thin strip con-
ductors in carrying out the calculations. The same tech-
nique is applicable to conductors of arbitrary cross sec-
tion.
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II. Low FrREQUENCY CHARGE DISTRIBUTIONS BY THE
Quasl-TEM ANALYSIS ‘

As shown in Fig. 1, the transmission line structure
studied in this paper consists of two optional ground
planes, three optional dielectric layers, and N, infinitely
thin strip conductors, each horizontally located at any po-
sition. In this section, we look for the charge distributions
on each strip, for all the multiconductor modes. As the
first step, each strip is divided into a few smaller seg-
ments. The total number of segments on all strips, N, is
usually much greater than the total number of strips, N..
The charge distribution under a certain voltage excitation
can be obtained numerically by a two dimensional static
moment method in the transverse dimension [1]-[4], [12]:

[9n] = [cmllon), myn=1,2,---N; (D)

where [q,,] and [v,] are the charge and the voltage on each
segment respectively, and [c,,,] is the coefficient matrix
of size N; X Nj; in the moment method solution. The ca-
pacitance matrix [C] of N, X N, for multiconductor lines
can be obtained by finding the charge distributions on all
strips through (1). The inductance matrix of N, X N, can
be obtained from the following equation:

[L] = poeolCol™' )

where [Cy] is the capacitance matrix found when all di-
electric layers are replaced by free space.

It is well known [8] that there are N, distinct quasi-
TEM modes on the transmission line system. With the
capacitance and inductance matrices obtained, the N, dis-
tinct modes can be obtained by solving the following tele-
graph equation:

d’v,]
d22

where [V,] is a column vector and represents the voltages
of all strip conductors with respect to the ground plane,
and [LC] is the product of the inductance matrix [L] and
capacitance matrix [C]. Equation (3) is a set of N, cou-
pled ordinary differential equations. Through the follow-
ing linear transformation,

[V = Mpllel, mn=12+--N (4

where [M,,,] is the transformation matrix obtained through
the diagonalization of matrix [LC], [15], and [e,] is the
transformed column vector of voltages, (3) can be changed
to the following decoupled equation set:

+ W)LC1IV,]1 =0, n=1,2,---N, (3

dz[en] 0 —
P + [B71le,] =0 )]
where
g 0
0 0 ... 00
[6°] = T ©)

0 0 - B

Fig. 1. Multiconductor transmission lines in multilayered media.

and 8%(n = 1, 2, + » + N,) are known as the propagation
constants of N, distinct quasi-TEM modes on an N .-con-
ductor transmission line system. The superscript ‘0’
means that these propagation constants are obtained from
a quasi-TEM analysis.

In (4), the nth column of {M,,,] is a voltage eigenvector
corresponding to the propagation constant Y. By taking
this voltage eigenvector as the enforced voltage excitation
on the multiconductor transmission line, and through (1),
we can get the charge distribution on each strip for the
distinct mode with propagation constant 8. It is noted
that although the vector eigenvector has only N, elements
representing the N, strips, the voltage excitation vector
[v,] used in (1) has N, elements representing N, segments
over all strips. The charge distribution [g,,] obtained from
(1), under an eigenmode voltage excitation, will be used
in determining the frequency dispersive propagation con-
stant as discussed in the following section.

III. Hice FREQUENCY PROPAGATION CONSTANT
THrROUGH A FULL WAVE VARIATIONAL
FORMULATION

To determine the high frequency propagation constant
for each distinct mode, we start with the following full
wave integral equation [7], [10]:

Ne
Etan(x) = ngl SS —(—;EOC, x') - js(x,) dx" =0 (7)

where x denotes the position, | Etan(x) is tangential electric

field on the strip conductors, Gz(x, x") is two dimensional
dyadic Green’s function of the electric field, and J,(x')
is surface electric current on the strip conductors. The full
wave Green’s function can be evaluated accurately using
the complex image technique [18].

For the N, distinct modes, the electric current trans-
versely flowing on the strip conductors is negligible com-
pared to the longitudinal current, i.e., J(x") = ZJ,(x").
This assumption is also used by Knorr et al. [9] in solving
single and coupled microstrip lines. Since only one com-
ponent of the electric current is involved in the integral
equation (7), we need only match one component of the
electric field on the strip conductors, i.e.,

Nc

E(x) = ,.21

S ZFax, x)J(x"ydx = 0. 8)
Sn

Using Galerkin’s method, the integral equation (8) can
be converted to the following matrix equation, similar to
[71, [10]:

Zw(BIL] =0, mn=12---N (9
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where N, is the total number of segments on all the strip
conductors, [1,] represents the unknown coeflicients of
current expansion.
The usual way of finding the unknown propagation con-
_stant 8 from (9) is to search the zeros of the determinant
of the matrix [Z,,(8)] [5]-17], [10], [14], using a numer-
ical iteration algorithm. It is known that calculating the
determinant of an N, X N, matrix involves O(N?) opera-
tions. For a transmission line system composed of one or
two strip conductors, calculating the determinant in each
iteration step is not a major problem, because the matrix
size is small. For multiconductor transmission lines com-
posed of, say, more than five conductors, calculating the
determinant of a large matrix takes a large amount of
computer time. Moreover. some unphysical modes may
be generated because the matrix size is much greater than
the number of strip conductors. For instance, a singie mi-
crostrip line has only one distinct mode. If we use three
segments in moment method solution, two non-physical
modes will be generated. To reduce the computer time
and eliminate the non-physical modes, we propose a new
scheme to obtain the frequency dispersive propagation
constant for each distinct mode, as described below.
Suppose that the eigenvector [/,] is known, by pre-mul-
tiplying (9) by the transpose vector [1,]7, we have the fol-
lowing 1 X 1 matrix equation,

U 1Zu( B = 0. (10)

The above equation can be considered as the result of
re-using the Galerkin’s method, where the eigenvector [1,]
is taken as a testing function. The eigenvalue equation
(10)is a 1 X 1 matrix equation, or a transcendental equa-
tion. The unknown eigenvalue (i.e., the propagation con-
stant) corresponding to the eigenvector [[,] can be ob-
tained by solving (10) iteratively.

It is seen in (10) that only a matrix multiplication is
involved in each iteration step, which takes O(N?) oper-
ations for an N; X N, matrix. This is opposed to the com-
monly used eigenvalue techniques [{5]-[7}, [10], [14]
where O(N?) operations are needed for calculating the de-
terminant of a matrix in each iteration step. Another fa-
vorable feature of (10) is that for a given current distri-
bution [/,] of an eigenmode, there is only one solution of
the eigenvalue. This is again opposed to the commonly
used eigenvalue techniques [5]-[7], [10], [14] where N,
eigenvalues exist for an N, X N, matrix. The elimination
of the non-physical modes is of special importance in
solving multiconductor lines, since it is not an easy task
to choose N, useful eigenvalues out of the total N, eigen-
values.

Since Galerkin’s method is used twice in deriving the
matrix equation (9) and the eigenvalue equation (10), the
error existing in the eigenvector [/,] only causes a very
small second order error in obtaining the propagation
constant. This argument is supported by the proof of
variational property of Galerkin’s method [16]. Numeri-
cal results in the next section will further confirm the ac-
curacy of (10).

In solving (10), the rigorous eigenvector [/,] is usually
unknown. In this paper we take the charge distribution
[g,] in (1) as an approximate current distribution, by us-
ing the following relation between charge and current:

d
g

The charge distribution [g,] was obtained from (1) under
the excitation of an eigenmode voltage as discussed in the
last section. In carrying out the calculations of (10), the
constant w /3 can be dropped.

The validity of the approximate current distribution ob-
tained from (11) can be argued as follows:

L] = Z1g), n=1,2,+"-N. 1

(a) On a zero-thickness strip conductor of infinite con-
ductivity, the surface charges and the longitudinal
surface current have the same distribution. This is
easily seen from the current continuity equation,
vV - J, = jwp,, and was also used by Hashimoto
{17].

(b) The charge distribution [g,,] obtained from quasi-
TEM analysis is a good approximation to the true
distribution of time-varying charges, and the lon-
gitudinal current.

(¢) Due to the variational property of Galerkin’s
method, the error introduced in the current distri~
bution causes only a second order error in the ei-
genvalue from (10). Therefore the frequency dis-
persive propagation constant can be determined
very accurately from (10), as will be confirmed in
the following examples.

As a summary, determining the frequency dispersion of
a multiconductor transmission line system involves the
following steps:

Step 1. Solve an electrostatic problem to obtain the [C]
and [L] matrices, using any one of the tech-
niques presented in [1]-[4], [12].

Find the eigenvalues and eigenvectors of the
matrix [LC]. The eigenvalues are the quasi-
TEM wave propagation constants of the dis-
tinct modes. They can be taken as the initial
values for step 4.

Taking one eigenvector of step 2 as the voltage
excitation, find the charge distribution on each
strip for this specific mode.

Taking the electrostatic charge distribution of
step 3 as the approximate eigenvector of lon-
gitudinal current, find the corrected propaga-
tion constant from (10).

Repeat steps 3 and 4 to get the corrected prop-
agation constants for all the distinct modes.

Step 2.

Step 3.

Step 4.

Step 5.

IV. RESULTS FOR MULTICONDUCTOR TRANSMISSION
LiNE EXAMPLES

We first validate the technique proposed in this paper
through some simple examples, i.e., the single microstrip
line and the coupled microstrip line. Then we present
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Fig. 2. (a) A microstrip line structure. (b) Frequency dispersion of mi-
crostrip lines.

some results for multiconductor transmission lines in mul-
tilayer dielectric media, i.e., a six-strip-coupled micro-
strip example and a three-strip-coupled inhomogeneous
stripline example.

A. A Single Microstrip Line

For a single microstrip line as shown in Fig. 2(a), there
is only one distinct mode which is the fundamental mode
on the line. We calculated the propagation constants of
microstrip lines with the dielectric constants ranging 1.0
to 40.0, the electrical thickness /N ranging from 0.0 to
0.15. For 1 mm-thick substrate, this corresponds to the
frequency range of dc up to 45 GHz. Our results agree
with those given by method of lines [13] with less than
0.2% difference. After converting the propagation con-
stants into effective permittivities, the results are plotted
in Fig. 2(b).

It should be emphasized that the current distribution
used in (10) is taken to be the same as the charge distri-
bution which is obtained from a quasi-TEM analysis. The
results for single microstrip line are excellent. They imply
that:

1) For the fundamental mode, neglecting the trans-
verse electric current is valid for the frequency range
investigated.

2) The approximate current distribution obtained from
a quasi-TEM analysis is sufficient for substitution
into (10) to accurately obtain the high frequency
propagation constant.

B. Coupled Microstrip: Two Strips

For a two-conductor microstrip line system as shown
in Fig. 3(a), there are two distinct modes, i.e., the odd

o
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Fig. 3. (a) A coupled microstrip line structure. (b) Frequency dispersion
of odd and even modes on coupled microstrip lines.
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Fig. 4. (a) A coupled microstrip line system with six strip conductors. (b)
Frequency dispersion of six distinct modes for the structure shown in
Fig. 4(a).

mode with V| = 1, ¥, = —1 and the even mode with V|
= 1, ¥, = 1. We calculate the high frequency propaga-
tion constants for these two distinct modes using the steps
described in last section. Fig. 3(b) shows our results and
those obtained using the method of lines [13]. The differ-
ence is still within 0.2%.
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Fig. 5. (a) A three-conductor stripline structure. (b) Propagation constants
of three distinct modes for the structure shown in Fig. 5(a).

C. Coupled Microstrip: Six Strips

For coupled microstrip lines with six strip conductors,
as shown in Fig. 4(a), the field pattern for each distinct
mode is more complicated than that in single or two-cou-
pled microstrip lines. Fig. 4(b) shows the propagation
constants of all the six distinct modes.

It is known that in two-coupled line case, the odd mode
has a lower effective dielectric constant €, ¢ than the even
mode. There are similarities in the six-coupled line case.
The mode with alternatively positive and negative polar-
ities across the strips, designated as mode 1 in Fig. 4(b),
has the lowest ¢, .z. The mode with the same polarity
across the strips, designated as mode 6, has the highest
€, off- Other modes in between are orthogonal to each other
and have intermediate e, ..

It is seen in Fig. 4(b) that at high frequencies the true
propagation constants for each distinct mode is signifi-
cantly greater than that from the quasi-TEM analysis.

D. Coupled Striplines: Three Strips with Three
Dielectric Layers

The frequency dispersion of multiconductor transmis-
sion lines is due to the dielectric inhomogeneity, i.e., the
existence of multiple dielectric layers. To show the sig-
nificance of dielectric layers, we calculate the high fre-
quency propagation constants of a three-conductor strip-
line system as shown in Fig. 5(a). The propagation
constants for three distinct modes are plotted Fig. 5(b),
for the homogeneous dielectric case (dotted line) and for
the inhomogeneous dielectric case (solid lines) respec-
tively.

It can be seen in Fig. 5(b) that in the homogeneous
stripline case, the three distinct modes have the same

propagation constant which is equal to \/;ko. For the in-
homogeneous stripline case, however, three distinct
modes are significantly different. All of them have signif-
icant frequency dispersion.

V. CONCLUSION

In this paper, a simple and new technique is presented
for calculating the frequency dispersion of multiconductor
transmission lines in multilayer diclectric media. In this
technique, we first solve a quasi-TEM problem to obtain
the quasi-TEM wave propagation constant and the charge
distribution on each strip conductor for a distinct mode.
Then this charge distribution is taken as an approximation
of the current distribution. The latter is used in a new
eigenvalue equation to obtain the frequency dispersive
propagation constant for that distinct mode. This new
technique has two advantages over the commonly used
eigenvalue techniques. Firstly, only O(N?) operations are
involved in each iteration step for solving the high fre-
quency propagation constant, as opposed to O(N ?) oper-
ations in each iteration step in the commonly used tech-
niques. Secondly, all the non-physical modes are easily
climinated using the new eigenvalue equation. To vali-
date the new technique, examples of simple and coupled
microstrip lines are tested. The results agree with those
given by method of lines with less than 0.2% difference.
Two more examples, a six-conductor microstrip system
and a three conductor inhomogeneous stripline system,
are also tested and show significant frequency dispersion.

The emphasis of this paper is a method for obtaining
an accurate set of high frequency propagation constants,
through a set of low frequency current eigenvectors which
are therefore inaccurate at the high frequencies; the
method uses a double application of the Galerkin’s pro-
cedure. After the high frequency propagation constants
are accurately obtained from (10), it is possible to substi-
tute them into (9) to obtain the corresponding current ei-
genvectors, from which the characteristic impedances can
be determined. Since this last step is not the main purpose
of this paper, and would not be noticeably different from
the techniques used in [5]-[7], [12], it is not included in
this paper.
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